
Copyright (c) 1991-1993 Borland International, Inc. All Rights Reserved.

The dBASE Language

This is a Borland Confidential R&D document, containing programmer notes from the Bladerunner
development team. It gives a technical description of the dBASE language including the object oriented
extensions that will be manifested in Bladerunner.

1 Types, Operators and Expressions

1.1 Types

1.1.1 Identifier names
Identifier Names are made up of letters, digits and _. The first character of a identifier name cannot be a
digit. Identifier names can be up to 64 characters in length. Identifier names are not distinguished by case.

1.1.2 Variables and Storage
Variables store values of a given type. A variable is an association between an identifier name and a
storage-location. The stored value and the stored value's data type may change over time. A variable is
created or changed in an assignment statement and is of the form:

<variable-name> = <expression>

The results of <expression> are stored in the storage-location refered to by <variable-name>. .
When a variable appears in an expression, the value in the associated storage-location is retrieved.

1.1.3 Data Types
This is the section on data types.

Character
This is a section on character type, it is not different than traditional dBASE.

Dates
This is a section on date type, it is not different than traditional dBASE.

Numeric
This is a section on number type, it is not different than traditional dBASE.

Logical
This is a section on logical type, it is not different than traditional dBASE.

Memo
This is a section on memo type, it is not different than traditional dBASE.

Function-Pointer
A function pointer is the address of a dBASE function or procedure. Function-pointer constants are of the
form identifier, where identifier is the function name.

Object-Reference
An object reference refers to an object. An object is a collection of variables. A variable inside of an object
whose type is function-pointer is called a method. A variable inside an object of any other type is called a
property. Thus, an object is a collection of properties and methods. More than one object reference can
refer to an object.

1.2 Operators
dBASE provides several types of operators: arithmetic, character, date, relation, logical, object, functional.

1.2.1 Arithmetic
The arithmetic operators are +,-,/,*, **.

1.2.2 Character
The character operators are +,-,$.

1.2.3 Date
The date operators are +,-

1.2.4 Relational
The relational operators are =, <> >,>=,<,<=.

1.2.5 Logical
Logical operators are .and., .or., .not.

1.2.6 Object operators
There are three operators that can be used to create and manipulate object.

1.2.6.1 The NEW operator
The NEW operator creates a new instance of an object. The NEW operator is of the form:

new <classname>([<parameters>])

The NEW operator creates an object of the <classname> to which it is applied. The NEW operator returns
an object-reference. The lifetime of the object is as long as all outstanding object references to that object.
For example:

x = new Font("helvetica")

Create a new font object. Parameters are passed to the constructor of the named class.

1.2.6.2 The Index Operator
The index operator accesses the contents of an object through a value. The index operator often refered to
as the array index operator is of the form:

<object-reference>[<expression>]

The index operator applies an <expression> to an object reference to access a variable within an object.
<expression> usually results in a numeric value. The result of the application of the index operator is a
storage-location. Like a variable, a storage-location resulting from applying the index operator may be
created or changed with an assignment statement. Also, like a variable its value can be retrieved when used
in an expression. (Note: Traditionally, the index operator was used exclusively for Arrays. Arrays in
dBASE are now Objects. The DECLARE syntax is retained for compatibility) The following example
illustrates the use of the index operator:

declare a[10]
a[1] = 10 && change a[1]'s value to 10
? a[1] && prints '10'

b = new fixedarray(10) && semantically identical to above
b[1] = 10 && statements.
? b[1]

1.2.6.3 The Member Access Operator
The member access operator access the contest of an object through an identifier name. The member
access operator '.' is of the form:

<object-reference>.<variable-name>

The member access operator is applied to an object-reference to access a variable within an object. The
result of the member access operator is a storage-location. Like a variable, a storage-location resulting
from applying the member access operator may be created or changed with an assignment statement. Also,
like a variable its value can be retrieved when used in an expression. The following example illustrates the
use of the member access operator:

objVar = new Object()
objVar.memberVar = 10 && creates 'memberVar'
objVar.memberVar2 = "a string" && creates 'memberVar2'
? objVar.memberVar && prints '10'

The member access operator works for both methods and properties:

objVar.methodVar = MyFunction && assigns function-pointer
objVar.propertyVar = "a string" && assigns data value

1.2.7 Functional operators
There is only one functional operator, the call operator.

Call operator
The call operator is used to call functions. The call operator is of the form:

<function-pointer>([<parameters>])

The call operator calls the function associated with the function pointer passing any specified parameters to
the function. The operator returns the value that the associated function returns. For example:

? foo() && 'foo' is a constant of type
&& function-pointer

goo = foo && creates a variable of type
&& function-pointer

? goo() && calls function 'foo'

decl a[10]
a[1] = foo && stores function-pointer to

&& a[1].
? a[1]() && calls function 'foo'

o = new object() && creates object
o.goo = foo && creates variable 'goo' in o

&& of type function-pointer
? o.goo() && calls function 'foo'

function foo
return 10

1.3 Expressions
The order of precedence for operators is as follows:

() [] -> . NEW
**
* /
+ -
= <> < <= > >=
.not.
.and. .or.

*note: Operators at the same level of precedence are performed left to right.

2 Statements
See the Online Help Language section for a list of language elements in the dBASE language.

3 Control Structures
The following are the flow-of-control structures in the dBASE language:
if - [else] - [elseif] - endif
do while -endo
do case
do until
for next
exit
loop

4 Functions
The following are the language elements related to the implementation of functions in the
dBASE language:
FUNCTION
LOCAL
PARAMETERS
PRIVATE
PROCEDURE
PUBLIC
RETURN
STATIC

5 Objects / Instance programming
Instance programming is the dynamic manipulation of objects. Objects are incrementally added to and
changed through assignment. What the object contains is not static and therefor can change over the
lifetime of the object.

5.1 Dynamic manipulation of objects
To begin instance programming first an empty object is created by using the new operator with the class
object.

o = new object()

This creates an object to which variable o refers. Variables may be dynamically added to the object through
assignment. For example:

o.x = 10 && add a numeric variable to the object
o.s = "hello" && add a character variable

More than one variable can refer to the same object. Variables contain object-references, not objects
themselves. Assignment between object-references copies references, not the objects themselves. For
example:

O = new Object()
O.X = 10
O.Y = 20
Y = O && 'O' and 'Y' refer to the same object
? Y.X && prints '10'
Y.Y = 30
? O.Y && prints 30

(NOTE: Object references, like all other variable types, can be passed as parameters, returned as a function
result, stored in arrays and generally be used like any other variables. There are only two valid operators
on object-references, the member access operator ("."), and the index operator ("[]").)

5.2 Member Function pointer
A member function pointer is a function pointer that is stored in an object. A member function pointer has
two parts: a function pointer and a reference to the object in which it is stored. In the simple case, only the
function-pointer part is needed. For example:

o = new Object()
o.x = 10
o.f = meth && create member function pointer 'f'
? o.f() && prints '10'

function meth
return "hello"

Member function pointers are only different from function pointer in how they relate to this.

5.3 This
When a member function pointer is retrieved, a local variable this in the procedure or function called is
bound to the object refered to in the member function pointer. The binding of this provides the
procedure or function a way to access to the object on which the call is being made. For example:

o = new Object()
o.x = 10
o.f = meth
? o.f()

function meth
return this.x + 1 && 'this' and 'o' refer to same

&& same object

Use of this gives functions a degree of reusability. A procedure or function need not know the object on
which it is operating. By referring to the calling object as 'this' the procedure can manipulate an object
by addressing its contents. For example, the following two objects have different members but can share
the same function:

o = new Object()
o.a = "hello"
o.x = 10
o.f = meth
? o.f() && prints '12'

q = new Object()
q.z = 30
q.x = 50
q.m = meth
? q.m() && prints '52'

function meth
this.x = this.x + 1
return this.x + 1 && 'this' and 'o' refer to same

&& same object

5.4 The Member Statement
The member statement binds an identifier to a variable of the same name with in an object.
The object bound is always refered to by this. The member statement has the form:

MEMBER <var>[,<var>...]

So instead of:

function DoSomething
this.x = 10
this.func()
this.y = this.y +1
return this.x+this.y

A more readable form can be written using member:

function DoSomething
Member x,y,func
x = 10
func()
y = y + 1
return x + y

Using member give compilers a chance to make optimizations.

6 Classes
Classes are a mechanism for creating objects that have an identical set of variables. Variables are added to
objects during the call to the constructor. A constructor is a special function that returns an object. The
class statement is the constructors declaration and there is not explicit return statement. During
construction this refers to the object being constructed. A constructor can only be called with the NEW
operator. The syntax for a class definition is as follows:

class <classname>[(parameters)] [of <parentclass>[(<parameters>)]]
<constructor-code>
[function <funcname>

<member function code>]
[function <funcname2>

<member function code>]
...

endclass

For example, the following class definition defines a class that has two member variables, ten and
twenty.

class numbers
this.ten = 10 && constructor code
this.twenty = 20 && constructor code

endclass

To create on object of class numbers, the new operator can be called.

n = new numbers()
? n.ten && prints '10'
? n.twenty && prints '20'

6.1 Parameters to constructors
Just like functions, there are two ways to receive parameters in constructors. Parameters may be declared
using the parameters statement or declared by enclosing them in parentheses following the class name.
Parameters using the later method have local scope and are the preferred method. For example, the
following code creates an object square that uses a parameter during construction:

s = new square(10)
? s.square && prints '100'

class square(n)
this.num = n
this.value = n*n

endclass

6.2 Member Functions
Functions can be added to classes simply by declaring them inside the class body. By declaring a function
inside a class body, an object of the class will have a variable of type function pointer bound to the declared
function. Because this binding is through a variable, the function pointer can be subsequently overridden.
The actual name of the function declared in a class body is formulated from the class name and is of the
form: <class-name>::<function-name>. For example:

s = new square2()
s.num = 5
? s.value() && prints '25'

class square2
this.num = 0
function value

return this.num * this.num
endclass

In the above class definition, an object of class square2 has a property value, whose type is
<function-pointer> and whose value is Square2::value.

6.3 Member Statement in Class Definitions
Member statements inside class definition are very similar to member statements inside functions. Member
statements inside class definitions differ from member statements inside functions only in that they have
scope of the entire class body. For example:

class square2
member num
num = 0
function value

return num * num
endclass

6.4 Subclassing / Inheritance
Inheritance, or subclassing, is essentially programming by difference. To subclass from an existing class
implementation, the OF option is used in the class definition. The OF keyword is immediately follow by
the parent class name, followed optionally, by parameters. During the constructor call, the parent
constructor is called first, followed by the constructor for the defined class. For example:

b = new base() && prints 'first '
? b.x && prints '10'
? b.y && prints '20'

d = new derived() && prints 'first second'
? d.x && prints '10'
? d.y && prints '50'
? d.z && prints '100'

class base
? "first "
this.x = 10
this.y = 20

endclass

class derived of base
? "second"
this.y = 50 && override value for y
this.z = 100

endclass

6.5 Overriding member functions/ Polymorphism
Member functions can be overridden by simply redeclaring the functions in the derived class. For example:

b = new base()
d = new derived()
? b.two() && prints 'base 2'
? d.two() && prints 'derived 2'

class base
function one

return "base 1"
function two

return "base 2"
endclass

class derived of base
function two

return "derived 2"
endclass

This mechanism provides for polymorphism. We might have code that deals with graphic objects. At

some point in time we might want to have one of these graphic object draw themselves. The code to tell
the objects to do the drawing would be the same regardless of the implementation.

function telldraw
parameters o

o.move(10,10) && move to position 10,10
o.draw() && render the object

This code could be used on circles, squares, etc., provided they implemented a method draw and a method
move. The implementations for these methods does not have to be similar.

6.6 Passing parameters down to base classes
Parameters can be passed to base classes by providing them to the parent class. The parameters passed to
the parent class can be arbitrary expressions. For example:

class cube(n) of square(n)
this.cubevalue = this.num*this.num*this.num

endclass

class square(n)
this.num = n
this.square = n*n

endclass

**Note: For alpha the only supported syntax for parameters passed to a constructor is of the form:

class foo
parameter x,y,z

endclass

